【论著】|SEC14L1P1对口腔鳞状细胞癌细胞增殖和迁移的影响
2025-05-17 中国癌症杂志 中国癌症杂志 发表于上海
本研究探究SEC14L1P1在OSCC细胞系中的表达特征、定位情况,以及其表达水平的变化对OSCC细胞增殖、迁移和EMT的影响,从而为寻找OSCC的有效治疗靶标提供新的理论基础和研究方向。
[摘要] 背景与目的:SEC14L1P1是SEC14家族的一种假基因,已被发现与多种肿瘤的发生、发展密切相关,但其在口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)中的作用尚未明确。本研究旨在深入了解SEC14L1P1在OSCC细胞内的表达特征和亚细胞定位,以及其对OSCC细胞增殖和迁移的影响。方法:通过ENCORI数据库对SEC14L1P1在头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)组织中的表达进行分析;利用GDC和UCSC Xena数据库进一步分析SEC14L1P1在HNSCC中的表达及其与患者预后之间的关系。利用实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction,RTFQ-PCR)检测SEC14L1P1在OSCC细胞系中的表达;采用RNA核质分离实验确定SEC14L1P1在OSCC细胞中的定位。对CAL-27细胞建立SEC14L1P1敲减(SS-SEC14L1P1)组和敲减对照(SS-NC)组,对HN30细胞建立SEC14L1P1过表达(SEC14L1P1)组和过表达对照(Vector)组。通过细胞计数试剂盒-8(cell counting kit-8,CCK-8)和transwell迁移实验评估SEC14L1P1表达变化对各组细胞增殖、迁移能力的影响。采用RTFQ-PCR和蛋白质印迹法(Western blot)检测SEC14L1P1表达改变对上皮-间充质转化(epithelial-mesenchymal transition,EMT)相关基因表达水平的影响。采用裸鼠皮下移植瘤模型观察SEC14L1P1在体内对OSCC细胞增殖的影响,将12只4周龄BALB/c裸鼠随机分为反义寡核苷酸(antisense oligonucleotide,ASO)-NC组和ASO-SEC14L1P1组,每组6只,每只裸鼠均做标记。进一步的机制研究通过RNAInter数据库分析与SEC14L1P1交互的分子,通过ENCORI数据库查询SEC14L1P1与DHX9的表达相关性。采用Western blot检测SEC14L1P1表达改变对磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)通路的影响。结果:数据库分析显示,SEC14L1P1在HNSCC组织中的表达高于正常组织,且与患者的不良预后密切相关。RTFQ-PCR结果表明,SEC14L1P1在6种OSCC细胞系中均高表达;RNA核质分离实验结果显示,在CAL-27和HN30细胞中SEC14L1P1主要定位于细胞核内。与SS-NC组相比,SS-SEC14L1P1组中的相对表达水平明显降低,且能显著抑制细胞增殖和迁移能力;与Vector组相比,SEC14L1P1组中的相对表达水平明显升高,细胞增殖和迁移能力也明显升高。SEC14L1P1的下调伴随E-钙粘蛋白(E-cadherin)的mRNA表达和蛋白水平升高,N-钙粘蛋白(N-cadherin)和波形蛋白(vimentin)的mRNA表达和蛋白水平降低,SEC14L1P1过表达后的结果则相反。裸鼠皮下移植瘤模型实验显示,与ASO-NC组比较,ASO-SEC14L1P1组皮下移植瘤体积和重量均减小。进一步的机制研究发现SEC14L1P1与DHX9表达呈正相关性,且已有研究表明DHX9能激活PI3K/AKT信号通路;敲减SEC14L1P1导致磷酸化PI3K(phosphorylated-PI3K,p-PI3K)和磷酸化AKT(phosphorylated-AKT,p-AKT)的蛋白表达减少,过表达SEC14L1P1则显示p-PI3K和p-AKT的蛋白表达增加。结论:SEC14L1P1在OSCC细胞和组织中呈现出较高的表达水平,并且能促进OSCC细胞增殖及迁移,这一现象可能与SEC14L1P1调控PI3K/AKT信号通路,进而促进EMT有关。
[关键词]SEC14L1P1;口腔鳞状细胞癌;细胞增殖;细胞迁移;上皮-间充质转化
[Abstract] Background and purpose: SEC14L1P1, a pseudogene of the SEC14 family, is closely associated with the development of various tumors, but its role in oral squamous cell carcinoma (OSCC) has not been clarified. This study aimed to gain insights into the expression characteristics and subcellular localization of SEC14L1P1 in OSCC cells, as well as its effects on OSCC cell proliferation and migration. Methods: The expression of SEC14L1P1 in head and neck squamous cell carcinoma (HNSCC) tissues was analyzed by the ENCORI database; The expression of SEC14L1P1 and its relationship with patient prognosis in HNSCC was further analyzed using the GDC and UCSC Xena databases. The expression of SEC14L1P1 in OSCC cell lines was detected by real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR); RNA nucleoplasmic separation assay was performed to determine the localization of SEC14L1P1 in OSCC cells. SEC14L1P1 knockdown (SS-SEC14L1P1) group and knockdown control (SS-NC) group were established for CAL-27 cells, and SEC14L1P1 overexpression (SEC14L1P1) group and overexpression control (Vector) group were established for HN30 cells. The effects of SEC14L1P1 expression on the proliferation and migration abilities of cells in each group were assessed by cell counting kit-8 (CCK-8) and transwell migration assays. RTFQ-PCR and Western blot experiments were used to detect the effects of altered SEC14L1P1 expression on the expression levels of epithelial-mesenchymal transition (EMT)-related genes. To investigate the effects of SEC14L1P1 on the proliferation of OSCC cells in vivo using a subcutaneous xenograft tumor model in nude mice, 12 four-week-old BALB/c nude mice were randomly divided into two groups: the antisense oligonucleotide (ASO)-NC group and the ASO-SEC14L1P1 group, with 6 mice in each group. All mice were individually labeled. Further mechanistic studies were performed by analyzing molecules interacting with SEC14L1P1 through the RNAInter database, and the ENCORI database was queried for expression correlation between SEC14L1P1 and DHX9. The effect of altered SEC14L1P1 expression on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was detected by Western blot assay. Results: Database analysis showed that the expression of SEC14L1P1 was higher in HNSCC tissues than in normal tissues, and was strongly associated with poor patient prognosis. The RTFQ-PCR results showed that SEC14L1P1 was highly expressed in all six OSCC cell lines; RNA nucleoplasmic separation showed that SEC14L1P1 was mainly localized in the nucleus in CAL-27 and HN30 cells. Compared with SS-NC, the relative expression of SEC14L1P1 in the SS-SEC14L1P1 group was significantly lower and significantly inhibited cell proliferation and migration, while the relative expression of SEC14L1P1 in the SEC14L1P1 group was significantly higher compared with the Vector group, which also significantly increased cell proliferation and migration. The down-regulation of SEC14L1P1 was accompanied by increased mRNA and protein levels of E-cadherin, and decreased mRNA and protein levels of N-cadherin and vimentin, with the opposite result after SEC14L1P1 overexpression. In vivo experiments showed that the xenograft tumor weight and volume of the ASO-SEC14L1P1 group were significantly reduced. Further mechanistic studies revealed a positive correlation between SEC14L1P1 and DHX9 expressions, and DHX9 has been shown to activate the PI3K/AKT signaling pathway. Knockdown of SEC14L1P1 resulted in decreased protein expressions of phosphorylated-PI3K (p-PI3K) and phosphorylated-AKT (p-AKT), and overexpression of SEC14L1P1 increased protein expressions of p-PI3K and p-AKT. Conclusion: SEC14L1P1 showed high expression levels in OSCC cells and tissues and promoted the proliferation and migration of OSCC cells, a phenomenon that may be related to the regulation of the PI3K/AKT signaling pathway by SEC14L1P1, which in turn promotes EMT.
[Key words] SEC14L1P1; Oral squamous cell carcinoma; Cell proliferation; Cell migration; Epithelial-mesenchymal transition
口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)是常见的头颈部癌症类型,起源于口腔内鳞状上皮组织,死亡率较高,约占口腔癌死亡人数的90%,主要发生在舌、唇和口底等部位[1]。由于OSCC具有高局部复发率、高转移率和预后不佳等特点,给患者的健康和生活质量带来了极大影响。尽管针对OSCC的手术、放疗及化疗等治疗手段已取得显著进步[2],但OSCC患者的5年生存率仍不足60%[3]。有鉴于此,深化对OSCC分子层面特性的理解,对于实现OSCC的早期精准诊断及优化治疗方案设计,显得尤为迫切和关键。
长链非编码RNA(long non-coding RNA,lncRNA)作为一类转录产物,其长度超过200个核苷酸且不具备编码蛋白质的能力,是当前分子生物学研究的热点之一[4]。当lncRNA在转录、表观遗传、转录后等多个层面调节基因表达时,它可能会影响肿瘤的生物学行为,因此可能成为肿瘤辅助诊断或治疗的潜在靶点[5-6]。许多lncRNA起源于假基因上游近端区域[7],以往研究[8]表明,某些在OSCC中异常高表达的lncRNA可调控细胞增殖、迁移及促进上皮-间充质转化(epithelial-mesenchymal transition,EMT)过程。关于lncRNA SEC14L1P1在口腔癌中的生物信息学作用暂无相关研究,数据库查询发现其在HNSCC组织中呈高表达。值得注意的是,SEC14L1P1基因位于人类第11号染色体的11p11.2区段,基因结构单一,仅包含1个外显子,全序列长度达2 586个碱基对。目前,SEC14L1P1在OSCC发生、发展中的具体作用及其机制尚不明确。本研究探究SEC14L1P1在OSCC细胞系中的表达特征、定位情况,以及其表达水平的变化对OSCC细胞增殖、迁移和EMT的影响,从而为寻找OSCC的有效治疗靶标提供新的理论基础和研究方向。
1 材料和方法
1.1 细胞系和实验材料
本研究使用了6种人OSCC细胞系(HN6、HN30、CAL-27、SCC-4、SCC-9和SCC-25),以人原代口腔黏膜上皮细胞作为正常对照,来源参照先前研究[9]。本研究使用的实验材料具体来源如下:DMEM高糖培养基和1∶1配比的DMEM/F12培养基均购自上海源培生物科技股份有限公司,青霉素-链霉素溶液、胎牛血清(fetal bovine serum,FBS)和胰蛋白酶溶液均购自天津市灏洋生物制品科技有限责任公司,TRIzol试剂、反转录试剂盒和实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction,RTFQ-PCR)试剂盒均购自日本TaKaRa公司,PARISTM Kit试剂盒购自美国Thermo Fisher Scientific公司,Lipo8000TM转染试剂购自上海碧云天生物技术有限公司,细胞计数试剂盒-8(cell counting kit-8,CCK-8)购自苏州新赛美生物科技有限公司,二辛可宁酸(bicinchoninic acid,BCA)蛋白定量试剂盒、磷酸缓冲盐溶液(phosphate-buffered saline,PBS)和含有吐温-20三乙醇胺缓冲盐溶液(tris-buffered saline Tween,TBST)均购自北京索莱宝科技有限公司,N-钙粘蛋白(N-cadherin)、E-钙粘蛋白(E-cadherin)、波形蛋白(vimentin)、β-actin一抗及Ki-67抗体均购自英国Abcam公司,磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)、蛋白激酶B(protein kinase B,AKT)及其磷酸化形式抗体均购自美国CST公司,增强化学发光(enhanced chemiluminescence,ECL)超敏发光液和transwell小室均购自美国Millipore公司,孔板、细胞培养皿和离心管等耗材均购自美国Corning公司。本研究所用的引物、SEC14L1P1 Smart Silencer及其阴性对照(NC)、动物实验用反义寡核苷酸(antisense oligonucleotide,ASO)及其阴性对照(NC)的设计合成均由广州锐博生物科技有限公司完成。
1.2 实验方法
1.2.1 数据库在线分析
利用ENCORI数据库(https://rnasysu.com/encori/panCancer.php)分析SEC14L1P1在HNSCC组织中的表达量,进一步利用GDC(https://portal.gdc.cancer.gov/)的癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据和UCSC Xena(http://xena.ucsc.edu/)平台所整合的TCGA数据库资料对SEC14L1P1在HNSCC组织中的表达与患者的生存率进行分析。纳入研究对象的基准条件设定为:① 原发性肿瘤;② 18岁<年 龄<80岁。而排除标准则明确定义为:① 患者有其他肿瘤史或合并其他恶性肿瘤、HNSCC转移状况;② HNSCC并非位于典型头颈部区域的病例;③ 病历资料不全或患者未同意进行随访;④ 缺乏可靠的SEC14L1P1表达数据。
通过RNAInter数据库(http://rnainter.org/)查询可能与SEC14L1P1相互作用来调控PI3K/AKT信号通路的分子;通过ENCORI数据库(http://starbase.sysu.edu.cn/)查询SEC14L1P1与DHX9的表达相关性。
1.2.2 细胞培养
HN6、HN30和CAL-27细胞系在含10% FBS和1%双抗的DMEM高糖培养基中进行培养;相比之下,SCC-4、SCC-9和SCC-25细胞系则在等比例混合的DMEM/F12培养基中生长,同样添加10% FBS和1%双抗。所有细胞均置于37 ℃、CO2体积分数为5%及适宜湿度的恒温培养箱中,以确保最佳的细胞生长状态。
1.2.3 RNA提取、反转录和RTFQ-PCR实验
采用TRIzol法从细胞中提取总RNA,然后通过反转录试剂盒将其反转录为cDNA。采用RTFQ-PCR检测SEC14L1P1在OSCC细胞系中的表达,β-actin作为内参。反应条件为95 ℃预变性30 s;随后进行40个循环,包括95 ℃变性5 s和 60 ℃退火延伸30 s。相对表达水平通过2-ΔΔCt方法进行量化计算。引物序列见表1。
1.2.4 RNA核质分离实验
采用PARISTM试剂盒技术对CAL-27和HN30细胞进行细胞核与细胞质RNA的分离处理,采用RTFQ-PCR检测SEC14L1P1在细胞核和细胞质中的相对表达水平。通过2(总RNA的Ct值-组分RNA的Ct值)×100%计算SEC14L1P1在细胞质和细胞核中的占比。其中,U6和GAPDH作为细胞核与细胞质的内参指标,以确定SEC14L1P1在细胞质与细胞核中的表达比例。引物序列见表1。
1.2.5 细胞转染实验及SEC14L1P1敲减效率验证
将SEC14L1P1 Smart Silencer转入CAL-27细胞,建立SS-SEC14L1P1实验组和SS-NC对照组。转染步骤:选取对数生长期的细胞,调整浓度至每孔2×105个,均匀混合后,放入培养箱中培养过夜。根据Lipo8000TM转染试剂的说明准备转染混合物,室温静置20 min后,将其缓慢加入细胞孔中。细胞在37 ℃、CO2体积分数为5%的环境下继续培养48 h,随后通过RTFQ-PCR评估敲减效果,并继续进行后续的实验步骤。SEC14L1P1沉默的靶序列详见表2。
1.2.6 细胞转染实验及SEC14L1P1过表达效率验证
使用质粒大抽试剂盒提取SEC14L1P1过表达质粒,并将其转入HN30细胞中,从而构建SEC14L1P1过表达(SEC14L1P1)组和阴性对照(Vector)组。选取处于对数生长期的细胞,以2×105个细胞/孔的密度均匀接种于6孔板中,并在理想的培养环境下培养至细胞贴壁并增长至70%~80%密度。根据Lipo8000TM转染试剂的说明准备转染混合物,并将其逐渐加入各个孔中。之后,将细胞放回37 ℃、CO2体积分数为5%的培养箱中继续培养48 h,采用RTFQ-PCR进行过表达效率检测,并进行后续实验。
1.2.7 CCK-8实验检测细胞增殖能力
转染后的各组细胞制成细胞悬液,100 μL/孔(2×103个细胞)接种至96孔板中,每组设3个复孔。每天在预定的时间点向每孔中加入CCK-8试剂(10 μL/孔),避光在培养箱内温育2 h,酶标仪测定450 nm波长处的吸光度(D)值,连测5 d,记录数值。采用GraphPad Prism 9.5软件绘制细胞的生长曲线。
1.2.8 Transwell实验检测细胞迁移能力
使用不含FBS和抗生素的培养基稀释并计数转染后的细胞。将含有2.5×104个细胞的150 µL细胞悬液接种到上层小室中,同时在下室中加入600 µL含有完整成分的培养基,在37 ℃的培养箱中培养48 h左右。细胞在迁移并穿过小室底膜,且数量达到适宜程度后,用4%多聚甲醛溶液固定,0.5%结晶紫染色液染色。随后,用棉签轻柔擦除未能成功迁移的细胞。在显微镜下随机选定5个观察视野,进行详细的观察和拍照记录。对成功穿过底膜的细胞进行计数,并据此计算出平均值用于后续的数据分析。
1.2.9 蛋白质印迹法(Western blot)检测相关蛋白的表达水平
转染48 h后的细胞用PBS漂洗3遍,用全细胞裂解液裂解细胞提取蛋白,在105 ℃金属浴中加热10 min,采用BCA法测定蛋白浓度。配置十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecylsulphate polyacrylamide gel electrophoresis,SDS-PAGE)凝胶,上样后进行电泳分离,在冰浴条件下转移至PVDF膜,常温下在5%脱脂奶粉内摇床封闭1 h,再分别加入1∶1 000稀释比例的E-cadherin、N-cadherin、vimentin、PI3K、p-PI3K(Tyr458)/(Tyr199)、AKT、p-AKT(Ser473)和β-actin抗体,4 ℃摇床过夜。第2天用TBST洗膜3次,加入二抗稀释液(1∶10 000),室温温育1 h,采用ECL超敏发光液曝光、显影,使用Image J软件进行灰度值分析。
1.2.10 SEC14L1P1敲减的裸鼠皮下移植瘤实验
12只4周龄BALB/c裸鼠购自济南鹏悦实验动物繁育中心[生产许可证编号:SCXK(鲁) 2019-0003],动物实验已获得潍坊医学院(现更名为“山东第二医科大学”)实验动物伦理委员会的批准(批准文号:2023SDL263),实验操作符合国家及学院相关的规定和使用章程。构建裸鼠皮下移植瘤模型的具体操作简述如下:随机分为ASO-NC组和ASO-SEC14L1P1组,每组6只,每只裸鼠均做标记。收集处于对数生长期的CAL-27细胞,用无血清DMEM培养基将其重悬并计数,将密度调至2×107个/mL;用注射器将100 μL细胞悬液注射于裸鼠上肢两侧的背部皮下。裸鼠饲养1周左右可见瘤体形成,分别向两组瘤内注射5 nmol/50 μL胆固醇和甲基化修饰的ASO-SEC14L1P1或ASO-NC,每4 d注射1次,共注射5次;定期观察瘤体生长情况。饲养28 d后结束观察,将裸鼠安乐死,取下完整瘤体,比较组间瘤体体积和重量并拍照。用4%多聚甲醛溶液固定瘤体24 h后,脱水、浸蜡、包埋和切片处理。随后对组织切片进行H-E染色,并使用Ki-67抗体进行免疫组织化学染色,使用正置显微镜观察切片并拍照。
1.3 统计学处理
实验独立重复3次,计量资料用x±s表示;两样本之间采用Student’s t检验,多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。对于临床数据的分析,采用Kaplan-Meier法绘制生存曲线,采用log-rank统计法比较两组间总生存率的差异。P<0.05为差异有统计学意义。采用GraphPad Prism 9.5软件进行数据分析和作图。
2 结 果
2.1 SEC14L1P1在HNSCC组织中的表达和临床意义
通过查询ENCORI数据库发现SEC14L1P1在 HNSCC组织中的表达高于正常组织(P <0.000 1,图1A)。通过GDC数据库进行数据分析发现SEC14L1P1在HNSCC组织中的表达也显著高于正常组织(P <0.000 1,图1B、 1C)。通过受试者工作特征(receiver operating characteristic,ROC)曲线对SEC14L1P1在HNSCC诊断中的效能进行了评价,结果显示,ROC曲线的曲线下面积(area under curve,AUC)达0.807 1,其中灵敏度为64.2%,特异度为88.64%(图1D)。进一步通过UCSC Xena数据库分析发现SEC14L1P1表达水平与HNSCC患者的临床病理学特征之间具有一定关系, SEC14L1P1高表达的HNSCC患者生存率更低(P <0.05,图1E、1F)。
图1 SEC14L1P1在HNSCC组织中的表达及预后
Fig. 1 Expression and prognosis of SEC14L1P1 in HNSCC tissue
A: ENCORI database analysis of SEC14L1P1 expression in HNSCC; B, C: GDC database analysis of SEC14L1P1 expression in HNSCC tissues and normal tissues; D: ROC curves analysis of the diagnostic value of SEC14L1P1 in HNSCC; E, F: UCSC Xena database analysis of SEC14L1P1 expression and patient survival rate in HNSCC. ****: P<0.000 1.
2.2 SEC14L1P1在OSCC细胞系中的表达和亚细胞定位
通过RTFQ-PCR检测发现SEC14L1P1在OSCC细胞系中高表达(图2A)。为了进一步探究SEC14L1P1在OSCC细胞中的定位,进行了RNA的核质分离实验,结果显示,SEC14L1P1在CAL-27和HN30细胞的细胞质与细胞核中均有分布,但其主要集中定位于细胞核内(图2B)。
图2 SEC14L1P1在OSCC细胞系中的表达与亚细胞定位
Fig. 2 Expression and subcellular localization of SEC14L1P1 in OSCC cell lines
A: RTFQ-PCR detection of SEC14L1P1 expression in OSCC cells; B: RNA nucleoplasmic isolation assay to detect subcellular localization of SEC14L1P1.
2.3 敲减SEC14L1P1抑制OSCC细胞增殖和迁移能力
RTFQ-PCR实验结果显示,SEC14L1P1在SS-SEC14L1P1组中的相对表达水平比SS-NC组低(图3A)。CCK-8实验结果进一步显示,敲减SEC14L1P1基因后细胞的活力相比SS-NC组显著下降(图3B)。Transwell迁移实验显示,敲减SEC14L1P1表达后细胞迁移能力下降(图3C、3D)。
图3 敲减SEC14L1P1对CAL-27细胞增殖和迁移的影响
Fig. 3 Effect of SEC14L1P1 knockdown on proliferation and migration of CAL-27 cells
A: RTFQ-PCR to detect the relative expression of SEC14L1P1 knockdown; B: CCK-8 assay to detect the effect of SEC14L1P1 knockdown on the proliferative ability of CAL-27 cells; C, D: Transwell migration assay to detect the cell migration ability of SEC14L1P1 knockdown. **: P<0.01; ***: P <0.001; ****: P<0.000 1.
2.4 过表达SEC14L1P1提高OSCC细胞增殖和迁移能力
RTFQ-PCR实验结果显示,SEC14L1P1过表达组的相对表达水平较对照组增加(图4A)。通过CCK-8实验、transwell迁移实验检测SEC14L1P1的表达差异对OSCC细胞增殖、迁移能力的影响。CCK-8实验结果显示,与阴性对照组相比,过表达SEC14L1P1后细胞的活力增强(图4B)。Transwell迁移实验结果显示,过表达组的细胞迁移能力与对照相比显著提高(图4C、4D)。
图4 过表达SEC14L1P1对HN30细胞增殖和迁移的影响
Fig. 4 Effect of overexpression of SEC14L1P1 on proliferation and migration of HN30 cells
A: RTFQ-PCR to detect the relative expression of SEC14L1P1 after its overexpression; B: CCK-8 assay to detect the effect of SEC14L1P1 overexpression on the proliferative ability of HN30 cells; C, D: Transwell migration assay to detect the migration ability of cells after the overexpression of SEC14L1P1. **: P<0.01; ***: P<0.001; ****: P <0.000 1.
2.5 敲减或过表达SEC14L1P1对EMT相关mRNA和蛋白的影响
向 RTFQ-PCR实验结果显示,敲减SEC14L1P1后N-cadherin和vimentin的mRNA水平降低,而过表达后则升高(图5A、5B)。Western blot实验结果表明,在CAL-27细胞中敲减SEC14L1P1使N-cadherin和vimentin的蛋白表达降低,E-cadherin则出现升高趋势。相反,在HN30细胞中过表达SEC14L1P1后,N-cadherin和vimentin的蛋白表达升高,而E-cadherin的蛋白表达则降低(图5C~5E)。
图5 SEC14L1P1敲减/过表达对OSCC细胞EMT的影响
Fig. 5 Effects of SEC14L1P1 knockdown/overexpression on EMT in OSCC cells
A, B: RTFQ-PCR to detect the effect of SEC14L1P1 knockdown/overexpression on EMT-related proteins; C, D, E: Western blot to detect the effect of SEC14L1P1 knockdown/overexpression on EMT-related protein expression. *: P<0.05; **: P<0.01; ****: P<0.000 1.
2.6 SEC14L1P1敲减对裸鼠皮下移植瘤生长的影响
向CAL-27细胞皮下移植瘤内定期注射ASO-SEC14L1P1,观察SEC14L1P1敲减对裸鼠皮下移植瘤生长的影响,结果显示,SEC14L1P1敲减的CAL-27细胞形成的移植瘤体积(图6A)和重量(图6B)均明显小于ASO-NC组。瘤体组织H-E和Ki-67染色后组织学形态观察结果显示,SEC14L1P1敲减后CAL-27细胞形成的移植瘤较ASO-NC组生长减缓(图6C)。
图6 SEC14L1P1敲减对OSCC细胞形成的裸鼠皮下移植瘤生长的影响
Fig. 6 Effect of SEC14L1P1 knockdown on the growth of subcutaneous xenograft tumors formed by OSCC cells in nude mice
A: Effect of SEC14L1P1 knockdown on CAL-27 cell tumor size; B: Effect of SEC14L1P1 knockdown on tumor weight in CAL-27 cells; C: H-E staining and Ki-67 immunohistochemical staining of CAL-27 cell xenograft tumor tissues after SEC14L1P1 knockdown. ***: P<0.001.
2.7 SEC14L1P1调控PI3K/AKT通路并可能与DHX9蛋白结合发挥作用
基于RNAInter数据库的预测分析表明,RNA结合蛋白DHX9与SEC14L1P1之间存在潜在的相互作用。进一步利用ENCORI数据库分析发现,在HNSCC中,DHX9与SEC14L1P1的表达水平呈显著正相关。
Western blot结果显示,PI3K和AKT的蛋白表达水平无明显变化,但敲减SEC14L1P1后,p-PI3K和p-AKT的蛋白表达明显下降,过表达则相反(图7A~7C)。
图7 SEC14L1P1调控PI3K/AKT信号通路的机制研究
Fig. 7 Mechanistic study of SEC14L1P1 regulation of the PI3K/AKT signaling pathway
A, B, C: Western blot to detect the effect of SEC14L1P1 knockdown/overexpression on the expression of PI3K/AKT and p-PI3K/p-AKT protein expression. **: P<0.01; ***: P<0.001; ****: P<0.000 1; NS: No significance.
3 讨 论
近年来,OSCC的发病率逐年增加,尽管医疗手段不断进步,但OSCC患者的生存前景仍不乐观[10]。因此,探寻新的治疗策略对于提升OSCC的诊断精度、疗效及患者预后至关重要。已有研究[11]表明,有多种lncRNA与OSCC患者的临床症状有关,在OSCC中表达异常且调控肿瘤细胞恶性生物学功能,lncRNA有望成为OSCC预后、诊断的辅助指标,其作为OSCC预后预测和靶向治疗靶点的前景十分广阔。本课题组前期研究[12-13]发现,LINC00460在OSCC组织中高表达与淋巴结转移及病理学分级有关,同时还能够促进OSCC细胞增殖和转移,并诱导EMT,KTN1-AS1作为一种竞争性内源性RNA能够联合miR-153-3p促进HNSCC细胞增殖、迁移、侵袭和EMT。由此可见,lncRNA在OSCC患者预后预测和靶向治疗中具有重要临床意义。
SEC14L1P1属于SEC14家族的假基因,SEC14基因编码的蛋白主要在细胞核中表达。Sec14最早在酵母中被发现,是一种具有SEC14结构域的细胞质蛋白,被认为在所有真核生物中都是保守的[14]。科学研究证实,SEC14在控制各种蛋白质结构方面发挥重要作用,特别是与蛋白质内传递有关的作用[15]。在哺乳动物基因组中,假基因被认为编码lncRNA,并通过表观遗传机制调控基因表达。在人类基因组中,假基因数量超过了蛋白质编码基因总数的一半[16]。过去的研究[17]认为假基因与真基因相似但无生物学功能,无法转录或翻译成功能性蛋白。然而,越来越多的研究[18]发现假基因在生物学上也扮演着重要角色。假基因衍生的RNA具有多方面的作用,包括被鉴定为反义RNA的转录后调控、内源性小干扰RNA和竞争性内源RNA。大量假基因及lncRNA在人类肿瘤中扮演着重要的调节角色,且在众多人类癌症中呈现出失调的现象[12]。假基因不仅与心血管疾病、糖尿病、珠蛋白生成障碍性贫血及神经退行性疾病有关[19-22],还与肿瘤的调控密切相关。例如,CMAHP通过减少Snail的泛素化,并通过GM-CSF的高表达诱导胃癌血管生成,从而促进胃癌转移[23];某些ceRNA网络(如CYP4Z2P及其亲本基因CYP4Z1)已被证实参与乳腺癌细胞的凋亡过程及对他莫昔芬的耐药[24];PTENP1作为miR-20a的内源性海绵,通过激活PI3K/AKT通路调控PTEN的表达,从而介导乳腺癌细胞增殖、侵袭和耐药性[25]。在OSCC的研究过程中,假基因也扮演着不容忽视的角色,其能促进癌症的发展,也能抑制其进程,例如,PDIA3P能促进OSCC的增殖[26]。本研究旨在揭示SEC14L1P1在OSCC细胞增殖、迁移过程中的作用进而探索其具体分子机制。
本研究发现SEC14L1P1在OSCC组织中表达上调,并在体外探讨了SEC14L1P1在OSCC中的作用,结果显示,SEC14L1P1能够促进OSCC细胞增殖和迁移能力,表明SEC14L1P1在OSCC中具有促癌作用。此外,本研究还发现SEC14L1P1在OSCC细胞中主要集中于细胞核内,这可能与特定lncRNA的表观遗传修饰作用有关,通过调控基因表达影响肿瘤的发生、发展[27-28]。因此,这一发现不仅有助于加深对OSCC生物学特性的理解,为进一步研究提供重要线索,并有望为开发新的治疗策略提供科学依据。
EMT是OSCC侵袭和转移的关键环节,可促进肿瘤细胞的侵袭和迁移[29-30]。lncRNA是OSCC EMT过程中的关键分子,也是OSCC转化和转移的重要分子标志,具有潜在的靶向治疗价值[31]。本研究结果显示,在敲低或过表达SEC14L1P1基因后,OSCC细胞中E-cadherin、N-cadherin和vimentin的表达改变。上述结果提示SEC14L1P1可以促进OSCC细胞EMT的发生。PI3K是人类恶性肿瘤中常见的信号转导途径之一,在细胞增殖、迁移、转移和生存等多种生物学行为中发挥重要作用[32]。AKT是一种丝氨酸-苏氨酸蛋白激酶,是PI3K的下游靶点之一,在调节许多下游基因方面发挥作用[33]。DHX9作为一种NTP依赖性解旋酶蛋白,能够解旋RNA和DNA以及异常的多核苷酸结构[34],查询发现DHX9是与SEC14L1P1具有相关性的RNA结合蛋白,已有研究表明,DHX9表达增加能够激活PI3K/AKT信号通路[35],而PI3K/AKT信号通路可以参与EMT过程的调控[36]。此外,lncRNA也能够通过激活PI3K/AKT信号通路来影响EMT并促进肿瘤迁移,包括OSCC[37-38]。Western blot实验结果显示,SEC14L1P1具有促进PI3K、AKT在Tyr458、Tyr199和Ser473位点磷酸化的能力,并且可以激活PI3K和AKT的酶活性。AKT作为一条重要的信号通路,通过磷酸化前体细胞凋亡相关蛋白,抑制凋亡通路的活化,最终引起细胞死亡[39]。已有证据[40]表明,PI3K/AKT信号通路的活化更易促进EMT的发生,从而促进肿瘤细胞增殖和迁移,但SEC14L1P1通过与DHX9蛋白的结合,激活PI3K/AKT信号通路,进而促进EMT发生,这一发现还需进一步实验验证。
综上所述,SEC14L1P1在OSCC组织和细胞中表达升高,可通过激活PI3K/AKT通路来促进EMT过程,进而增强OSCC细胞增殖及迁移能力,但其具体机制还需进一步研究。SEC14L1P1作为一种促癌因子,为OSCC的诊断、预后预测及潜在治疗策略研究提供了新的视角。
第一作者:
郑文甜,学士,硕士在读。
通信作者:
蒋英英,博士,教授。
作者贡献声明:
郑文甜:文章撰写,实施研究过程;公慧:实施研究过程,数据分析;张馨月:实施研究过程,图片整理;郝嘉仪:数据分析,参与文章撰写;王亚杰:实验分析,文章修改;蒋英英:设计研究思路及方案,审核文章。
[参考文献]
[1] JING F Y, ZHU L J, ZHANG J Y, et al. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma[J]. Genome Biol, 2024, 25(1): 272.
[2] WANG D W, QI H, ZHANG H X, et al. TAF1L promotes development of oral squamous cell carcinoma via decreasing autophagy-dependent apoptosis[J]. Int J Biol Sci, 2020, 16(7): 1180-1193.
[3] HAO Y L, XIAO Y X, LIAO X Y, et al. FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma[J]. Int J Oral Sci, 2021, 13(1): 6.
[4]BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2): e202009045.
[5] JIANG Y Y, GUO H Y, TONG T, et al. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5[J]. Mol Ther, 2022, 30(1): 448-467.
[6] CHEN Y, LU Y W, YANG L, et al. LncRNA like NMRK2 mRNA functions as a key molecular scaffold to enhance mitochondrial respiration of NONO-TFE3 rearranged renal cell carcinoma in an NAD+ kinase-independent manner[J]. J Exp Clin Cancer Res, 2023, 42(1): 252.
[7] XIE J B, LI Y, LIU X M, et al. Evolutionary origins of pseudogenes and their association with regulatory sequences in plants[J]. Plant Cell, 2019, 31(3): 563-578.
[8] LU N, JIANG Q M, XU T S, et al. LncOCMRL1 promotes oral squamous cell carcinoma growth and metastasis via the RRM2/EMT pathway[J]. J Exp Clin Cancer Res, 2024, 43(1): 267.
[9] 蒋英英, 陈 曦, 石 雨, 等. 长链非编码R N A COL11A1-208对口腔鳞癌细胞增殖及侵袭的影响[J]. 解放军医学杂志, 2022, 47(9): 851-862.
JIANG Y Y, CHEN X, SHI Y, et al. Effect of long non-coding RNA COL11A1-208 on proliferation and invasion in oral squamous cell carcinoma cells[J]. Med J Chin People’s Liberation Army, 2022, 47(9): 851-862.
[10] ZHOU J Y, HU Z X, WANG L, et al. Tumor-colonized Streptococcus mutans metabolically reprograms tumor microenvironment and promotes oral squamous cell carcinoma[J]. Microbiome, 2024, 12(1): 193.
[11] ZHOU W K, FENG Y S, LIN C Z, et al. Yin Yang 1-induced long noncoding RNA DUXAP9 drives the progression of oral squamous cell carcinoma by blocking CDK1-mediated EZH2 degradation[J]. Adv Sci (Weinh), 2023, 10(25): e2207549.
[12] JIANG Y Y, CAO W, WU K, et al. LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus[J]. J Exp Clin Cancer Res, 2019, 38(1): 365.
[13] JIANG Y Y, WU K, CAO W, et al. Long noncoding RNA KTN1-AS1 promotes head and neck squamous cell carcinoma cell epithelial-mesenchymal transition by targeting miR-153-3p[J]. Epigenomics, 2020, 12(6): 487-505.
[14] YAO H Y, LU Y Q, YANG X L, et al. Arabidopsis Sec14 proteins (SFH5 and SFH7) mediate interorganelle transport of phosphatidic acid and regulate chloroplast development[J]. Proc Natl Acad Sci USA, 2023, 120(6): e2221637120.
[15] JIANG Z M, YANG G C, WANG G C, et al. SEC14L3 knockdown inhibited clear cell renal cell carcinoma proliferation, metastasis and sunitinib resistance through an SEC14L3/RPS3/NFκB positive feedback loop[J]. J Exp Clin Cancer Res, 2024, 43(1): 288.
[16] DE SANCTIS P, FILARDO G, ABRUZZO P M, et al. Noncoding RNAs in the transcriptional network that differentiates skeletal muscles of sedentary from long-term endurance- and resistance-trained elderly[J]. Int J Mol Sci, 2021, 22(4): 1539.
[17] CRISTIANO L. The pseudogenes of eukaryotic translation elongation factors (EEFs): role in cancer and other human diseases[J]. Genes Dis, 2021, 9(4): 941-958.
[18] SUN M Y, CHANG L, HE L, et al. Combining singlecell profiling and functional analysis explores the role of pseudogenes in human early embryonic development[J]. J Genet Genomics, 2024, 51(11): 1173-1186.
[19] QU W B, ZHOU X, JIANG X J, et al. Long noncoding RNA Gpr137b-ps promotes advanced atherosclerosis via the regulation of autophagy in macrophages[J]. Arterioscler Thromb Vasc Biol, 2023, 43(11): e468-e489.
[20] WU T, GU W Z, HONG L B, et al. Exploration of shared TFmiRNA- mRNA and mRNA-RBP-pseudogene networks in type 2 diabetes mellitus and breast cancer[J]. Front Immunol, 2022, 13: 915017.
[21] MA Y N, LIU S Q, GAO J, et al. Genome-wide analysis of pseudogenes reveals HBBP1’s human-specific essentiality in erythropoiesis and implication in β-thalassemia[J]. Dev Cell, 2021, 56(4): 478-493.e11.
[22] GUSTAVSSON E K, SETHI S, GAO Y J, et al. The annotation of GBA1 has been concealed by its protein-coding pseudogene GBAP1[J]. Sci Adv, 2024, 10(26): eadk1296.
[23] HUANG H W, CHEN C Y, HUANG Y H, et al. CMAHP promotes metastasis by reducing ubiquitination of snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer[J]. Oncogene, 2022, 41(2): 159-172.
[24] ZHENG L F, GUO Q Q, XIANG C X, et al. Transcriptional factor six2 promotes the competitive endogenous RNA network between CYP4Z1 and pseudogene CYP4Z2P responsible for maintaining the stemness of breast cancer cells[J]. J Hematol Oncol, 2019, 12(1): 23.
[25] GAO X, QIN T, MAO J, et al. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 256.
[26] SUN C C, ZHANG L, LI G, et al. The lncRNA PDIA3P interacts with miR-185-5p to modulate oral squamous cell carcinoma progression by targeting cyclin D2[J]. Mol Ther Nucleic Acids, 2017, 9: 100-110.
[27] DING T Y, XU H W, ZHANG X Y, et al. Prohibitin 2 orchestrates long noncoding RNA and gene transcription to accelerate tumorigenesis[J]. Nat Commun, 2024, 15(1): 8385.
[28] YIN Y F, LU J Y, ZHANG X C, et al. U1 snRNP regulates chromatin retention of noncoding RNAs[J]. Nature, 2020, 580(7801): 147-150.
[29] CASTANEDA M, DEN HOLLANDER P, KUBURICH N A, et al. Mechanisms of cancer metastasis[J]. Semin Cancer Biol, 2022, 87: 17-31.
[30] HUANG Y H, HONG W Q, WEI X W. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J]. J Hematol Oncol, 2022, 15(1): 129.
[31] JOHN LIU S, DANG H X, LIM D A, et al. Long noncoding RNAs in cancer metastasis[J]. Nat Rev Cancer, 2021, 21(7): 446-460.
[32] GLAVIANO A, FOO A S C, LAM H Y, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J]. Mol Cancer, 2023, 22(1): 138.
[33] HE Y, SUN M M, ZHANG G G, et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 425.
[34] MURAYAMA T, NAKAYAMA J, JIANG X P, et al. Targeting DHX9 triggers tumor-intrinsic interferon response and replication stress in small cell lung cancer[J]. Cancer Discov, 2024, 14(3): 468-491.
[35] SUN Y, ZHANG H, MA R R, et al. ETS-1-activated LINC01016 over-expression promotes tumor progression via suppression of RFFL-mediated DHX9 ubiquitination degradation in breast cancers[J]. Cell Death Dis, 2023, 14(8): 507.
[36] CHI M, LIU J, MEI C X, et al. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 175.
[37] LI D D, XIA L Y, HUANG P, et al. Cancer-associated fibroblast-secreted IGFBP7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis[J]. Cell Death Discov, 2023, 9(1): 17.
[38] ZHAN K, PAN H F, ZHOU Z, et al. Biological role of long noncoding RNA KCNQ1OT1 in cancer progression[J]. Biomed Pharmacother, 2023, 169: 115876.
[39] HUA H, ZHANG H Y, CHEN J Z, et al. Targeting Akt in cancer for precision therapy[J]. J Hematol Oncol, 2021, 14(1): 128.
[40] LI Q, LI B, LU C L, et al. LncRNA LINC01857 promotes cell growth and diminishes apoptosis via PI3K/mTOR pathway and EMT process by regulating miR-141-3p/MAP4K4 axis in diffuse large B-cell lymphoma[J]. Cancer Gene Ther, 2021, 28(9): 1046-1057.
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言

#口腔鳞状细胞癌# #SEC14L1P1#
30 举报